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Abstract

This paper presents a nonlinear programming model with multi-constraints of inequality to solve inverse visco-
elasticity problems. By utilizing an aggregate function approach, multi-constraints are converted into a single smooth
constraint. The optimization with a single constraint is realized by using a technique of multiplier penalty functions, and
a standard BFGS algorithm is employed in the solution process. Results with time dependent and independent noise
data are given.
© 2003 Published by Elsevier Science Ltd.
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1. Introduction

One of the important issues of inverse viscoelasticity problems is determining unknown viscoelastic
parameters via some known information of quasi-static displacements. A number of relevant literatures can
be found. Li (1992) employed an iterative method to estimate Young’s module of a concrete dam; Yang
(1996, 1998) developed an approach identifying viscoelastic parameters in homogeneous and inhomoge-
neous media. A 3-D inverse analysis for identifying viscoelastic constitutive parameters was given by Yang
(see e.g. Yang and Zhu, 1991). The application of six kinds optimization techniques solving inverse
viscoelasticity problems was discussed by Lv (1996), the merits and demerits of these techniques were
evaluated in terms of the choice of initial guess, convergence rate, convergence precision, etc.

In the past work, the determination of unknown viscoelastic parameters was usually proposed and
solved as an unconstrained optimization problem. However for the constitutive parameters to be identified,
there physically exist a constraint of lower bound greater than ‘0’. Without consideration of this constraint,
numerical oscillation, lower convergence rate, and even divergence may occur in the iterative process of
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unconstrained optimization, especially in the case without guarantee of the convexity for the proposed
problems.

With the above consideration, a nonlinear programming model with multi-constraints is proposed to
estimate unknown viscoelastic parameters in this paper. By exploiting a maximum entropy theory based on
aggregate function method, multi-constraints can be converted into a single differentiable constraint
without distinguishing active and inactive constraints in the iterative process. The optimization with a single
constraint is realized using a technique of multiplier penalty functions. Satisfactory results are shown in the
numerical validation, and the effects of time dependent and independent noise data on the results are given.

2. Governing equations for direct viscoelasticity problems
For direct viscoelasticity problems, the governing equations which describe equilibrium relationship,

relationship of displacement and strain, and constitutive relationship, can be given by (see e.g. Christensen,
1982)

[Hl{o} +{F} =0 (1)
{e} = [Ha){u} (2)
{e} = DIL({a} — {a}) (3)
where {¢} and {o} represent strain and stress vectors, {F '} is a vector of body force, {q}o denotes a vector of
initial stress, [D] is a constant matrix only related with Poisson ratio p, [H,] = [H,] denotes a matrix of

differential operators.
For the plane stress problem

1 —u 0
D= |- 1 0 4)
0 0 2(1+np
0
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0
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L is an integral operator (see e.g. Christensen, 1982), and is defined by

r={ G- [Ogoa} (©)

where E is Young’s modulus, ¢ represents time, 7 is an integral variable, and ¢ denotes a kernel function.
The boundary conditions are

{u} ={a}t xeI, (7)
{e} ={/} xel, (8)

where {u} is a vector of prescribed displacements, [n] refers to a unit vector of outside normal on the
boundaries {f} is a vector of prescribed traction on the boundaries, x represents a vector of coordinates
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Fig. 1. A Burgers model.

I' =T,+ I', denotes the whole boundary of the domain, subscripts u and ¢ represent displacement and
stress, respectively.

Under the condition that {F'}, {f'}, and {¢}, are time independent, and {#} = 0, it has been proved that
the solution of Egs. (1)-(3), (7) and (8) can be given by (see e.g. Yang and Li, 2000)

{u} = (X, ){u} ©)

where {u}° is the solution of an elasticity problem, and can be determined by {F}, {f} and {c}, analytically
or numerically.

OX,1) =1/E - /0 gé(t,f,X)dr (10)

where X represents a vector of viscoelastic parameters, (¢, 7, X ) is a kernel function, and has different forms
for different viscoelastic models. In this paper, Burgers model is adopted (as shown in Fig. 1). In this case,
O(x, t) becomes

O(t,x) =x1 +1t x4 (1 —exp(—xs - 1)) " x3 (11)

where X = 1/E1, Xy = 1/}’]1, X3 = 1/E2, X4 = Ez/i]z.
The reduction of model (11) leads to some simpler viscoelastic models, i.e.

(a) O(x,t) will tend to be a Maxwell model when E, and 5, approach to oo,
(b) O(x,?) will tend to be a Kelvin model when E; and #, approach to oo,
(c) QO(x,t) will tend to be a Linear model when 5, approaches to co.

3. Inverse viscoelasticity problem

For the inverse problem of Eq. (9), the left hand side of Eq. (9) are all or partially known, the unknowns
to be determined are {X} = {x;,x,,x3,x4} on the right hand side.
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{X} can be evaluated by minimizing a function defined by

1 O
HZEZ(uk—uk)T(uk—uk) =Y R ‘R (12)
The constraints can be described by
ST. x,>0 (i=1,2,...,m) (13)

where u; denotes a vector of known quasi-static displacements which is usually obtained by measurement;
u, 1s given by Eq. (9), and subscript & represents a time series of sample points. The constraints of Eq. (13)
represent the physical requirements for the viscoelastic parameters.

The sensitivity of IT with respect to {X} is given by

oI
= 2GR

where
sz%z{w}-% (14)
%j”) _ (15)
%}fﬁ _4 (16)
%}f’” =1—exp(—x; 1) (17)
%j” = xatyexp(—x - 1) (18)

4. Implementation of aggregate function method

Multi-constraints defined by Eq. (13) can be converted into a single differentiable constraint via a
maximum entropy theory based on aggregate function method (see e.g. Li, 1991, 1994), the trouble caused
by distinguishing active and inactive constraints in the iterative process can therefore be avoided. Fur-
thermore, some well developed algorithms, such as quasi-exact penalty function algorithm, multiplier
penalty functions algorithm etc., can be exploited (see e.g. Li, 1991, 1994).

Consider a problem defined by

min  f(Y) .
(P) {s.t. a()<0, i=1,2,....m 'SR (19)

where Y is a vector of variables, f(Y) and g;(Y) are smooth nonlinear functions of Y.
The problem (P) can be converted into an equivalent problem with a single constraint

(F1) {lsmtln <o 20)

where the single constraint is termed as ‘maximum’ constraint, having the form
p(Y) = max{g(Y)} (21)
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The problems of (P1) and (P) are definitely equivalent since they have the same feasible regions. Due to the
nondifferentiability of Eq. (21), g,, a ‘surrogate constraint’ or ‘aggregate function’, was proposed by Li
(1991, 1994) to smooth constraint, it can be described by

&(Y) = (1/p)In { > exp[p.g,-m]} 22)

where p is a positive parameter.
There exists an inequality relationship (see e.g. Li, 1994)

2(Y)<g,(Y)<p(Y) +In(m)/p (23)

where m is the number of constraints.

Li (1994) proved that g,(Y) will approach y(¥) uniformly in R” when p tends to infinity. Thus the
problem (P1) with a nonsmooth constraint (21) can be equivalent to a problem with a single smooth
constraint, i.e.

min [ (Y)

(P2) Vst &) =(1/p)n { Z explp - gl»(Y)]} <0

(24)

g,(Y) represents an integral effect of all constraints. The adoption of g,(¥) can make computing more
efficient (see e.g. Li, 1994).

When problem (P) has at least one ‘active’ constraint, the single inequality constraint of (P2) can be
further written as an equality constraint (see e.g. Cheng, 1984; Tang and Qin, 2000). By means of multiplier
penalty functions (see e.g. Tang and Qin, 2000), the problem (P2) can be treated as an unconstrained
optimization defined by

(P3) min  @,(Y,0) = f(¥) +o-g(Y)+c g (¥)/2 (25)

where c¢ is a penalty factor, « is a Lagrange multiplier associated with the single constraint (22), o is equal to
the sum of all Lagrange multipliers in the problem (P) (see e.g. Li, 1994).
In the iterative process, o will be updated by

o =of f g, (YF) (26)

In order to solve Eq. (25), a standard BFGS algorithm (see e.g. Cheng, 1984; Tang and Qin, 2000) for
unconstrained optimization is employed.
The major steps of solving Eq. (25) via the BFGS algorithm include

I. Set n (the number of unknown variables), ¢ (the convergence precision), Y° (the initial guess), p and c.
Set oy = 0, By = I (unit matrix), and K = 0.
Calculate F, the gradient of the objective function (25) at the point Y°.
I Set SK = —B¢'Fy,
Determine of by minimizing f(Y* + «S*) along the direction of S¥,
Set Y&+ = YK + oK 5K
Calculate Fy,
1. Check the criterion if ||[Y**! — Y*|| <e, Then
Y*B — YK—H7 f*B :f(YK'H)
stop iteration, and go to VI
Else Goto IV
IV. Calculate
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YBiyk] Oxdy  OxyxBr + Bxykdyg
Bev =Byt {1+y,fo</K} KOs _ OxiBi + B
))K))K 51(?]( 51(’))](
o = YA YK g = K X

V. Update o by using Eq. (26)

Set K=K+1
Goto II
VI. Stop

where F; represents the gradient of the objective function (25) at the point Y.

5. Numerical examples and remarks

By considering Egs. (12) and (13) as Problem (P), and using the techniques proposed in the Section 4, a
number of numerical tests are carried out. The results of identification are exhibited in Table 1. Table 2
shows the effect of initial guess of iteration on the results

Two kinds of noise data are taken into account (see e.g. Wang et al., 2000), i.e.

{w}=0X,0)(1+0-&-{u°} (time independent noise data) (27)
and
{w}=0X,t)-(1+0-&-sin(r)) - {u°} (time dependent noise data) (28)

where {u*} represents the known information of quasi-static displacements with noise data, ¢ is a random
variable, and follows a normal distribution with zero mean and unit standard deviation, o denotes a de-
viation.

For each fixed value of ¢, 50 groups of results are obtained with 50 & produced randomly.The confidence
interval is evaluated by (see e. g. Wang et al., 2000)

= tppa-n xS
¥ P2ND T2 29
- (29)

where X represents the mean of identified parameters, S is the standard deviation of identified parameters, ¢
denotes a ¢ distribution with the degree of freedom (N — 1), N is the capability of samples, and the con-
fidence level is 1 — f.

The results with a confidence interval of 95% for both time independent and dependent noise data are
given in Tables 3 and 4 where all the computing parameters are as same as those in Table 1.

In the above numerical examples,

{u}" = (1.0000, 1.0005, 1.0006),

the units adopted are time: s (second), E: N/cm?, 1: s N/cm?.
On the basis of the above numerical tests, some remarks can be given as follows

(1) The proposed approach is capable of identifying viscoelasticity constitutive parameters/models within
few steps of iteration.
(i) The choice of initial guess shows slight effect on the final results, however steps of iteration will be
affected.
(ii1) The results of identification are basically not affected by choosing different number of sample points.



Table 1

Identification of viscoelastic parameters/models

Initial guesses Final values Actual values Size of Number Number Models
E; m E, b E m E, 5] E m E, b .tlme of O.f ltera-
inter- sample tions
val points
1.0E§ 1.0E9 1.0E§ 1.0E10 1.00E5 1.00E8 6.73E18 6.73E21 1.00E5 1.00E8 oo 0 5.0 878 2 Maxwel
1.OES 1.0E9 1.0E8 [1.0E10 0.24E9 0.21E13 5.00E4 1.00E7 o 00 5.00E4 1.00E7 5.0 578 2 Kelvin
1.0OE§ 1.0E9 1.0E8 1.0E10 1.00ES 7.99Ell 4.99E4 0.99E7 1.00E5 oo 5.00E4 1.00E7 5.0 578 3 Linear
1.0E8 1.0E9 1.0E8 1.0E10 1.00E5 0.99E8 4.99E4 0997E7 1.00E5 1.00E8 5.00E4 1.00E7 5.0 578 3 Burgers
Table 2
The effect of initial guess on the results
Initial guesses Final values Actual values Size of Number Number
E, m E, Up) E, m E, ) E m E, b 'tlme of'sample .Of .
interval  points iterations
1.0E11  1.0E15 1.0E12 1.0E16 0.998E5 1.000E8 5.000E4 1.000E7 1.0ES5 1.0E8 5.0E4 1.0E7 5.0 578 15
1.0E6 1.0E10  1.0E10 1.0E12  1.011ES 0.999E8 4.980E4 0.982E7 1.0E5 1.0E8 5.0E4 1.0E7 5.0 778 15
1.0E4 1.0E5 1.0E4 1.0E6 1.004E5 0.999E8 4.993E4 0.993E7 1.0ES 1.0E8 5.0E4 1.0E7 5.0 678 3
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Table 3

The effect of time independent noise data on the results

Models Expected values Confidence intervals
E, m E; L E m Ey m
Maxwel o¢=0.01 0.995301ES 0.995301E8 0.530907E19 0.530907E21 0.993359E5- 0.993359E8- 0.470065E19—  0.470065E21—
0.997243ES5 0.997243E8 0.591748E19 0.591748E21
g =0.03 0.884810E5 0.986771E8 0.412023E19 0.412023E21 0.854451E5- 0.981132E8- 0.333391E19-  0.333391E21-
0.915169E5 0.992411E8 0.490655E19 0.490655E21
Linear g =0.01 0.100043E6 0.451482E12 0.496967E5 0.987215E7 0.998704E5— 0.362738E12—-  0.495961E5— 0.985218E7-
0.100216E6 0.540226E12 0.497973ES 0.989213E7
g =0.03 0.996059E5 0.884086E12 0.492168E5 0.972402E7 0.992059E5- 0.821734E12-  0.489107E5- 0.963775E7-
0.100006E6 0.946438E12 0.495229E5 0.981029E7
Burgers ¢ =0.01 0.100680E6 0.981596E8 0.500010E5 0.978376E7 0.100578E6- 0.976520E8— 0.499614E5- 0.972530E7-
0.100782E6 0.986673E8 0.500405ES5 0.984222E7
g =0.03 0.100417E6 0.963926E8 0.496078E5 0.957988E7 0.100235E6- 0.953527E8— 0.493769E5- 0.946076E7—-
0.100599E6 0.974325E8 0.498386E5 0.969900E7
Table 4
The effect of time dependant noise data on the results
Models Expected values Confidence intervals
E N E, B E\ N E, B
Linear o =0.01 0.100748E6 0.168685E12 0.498987E5 0.988381E7 0.100641E6— 0.158346E12—  0.498839E5- 0.986792E7-
0.100855E6 0.179024E12 0.499135E5 0.989970E7
g =0.03 0.100742E6 0.155425E14 0.498970E5 0.988898E7 0.100643E6— 0.116479E14—  0.498857E5- 0.987077E7—
0.100841E6 0.194371E14 0.499084E5 0.990719E7
Burgers g =0.01 0.100951E6 0.986326E8 0.501735E5 0.983836E7 0.100855E6— 0.984981E8- 0.501565E5~ 0.982185E7—
0.101047E6 0.987670E8 0.501906E5 0.985487E7
g =0.03 0.101409E6 0.979825E8 0.502520E5 0.976649E7 0.101073E6— 0.975524E8- 0.501963E5- 0.970790E7-
0.101745E6 0.984126E8 0.503077ES5 0.982509E7
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(iv) The results of identification are affected by the noise data, and seem more sensitive to time dependant
noise data.
(v) The choice of p is a key factor affecting computing efficiency and final results. A larger p may lead to a
smaller convergence domain. A proper way is to modify p in the iteration process.
(vi) The choice of ¢ seems no effect on the convergence, and may affect the convergence rate slightly.
(vii) The initial choice of o has great effect on the computing efficiency, by initializing « = 0 satisfactory
results have been obtained for the most numerical tests.

6. Conclusion

With the consideration of the constraints of lower bound for viscoelastic constitutive parameters, a
nonlinear programming model with multi-constraints is proposed in this paper to solve inverse viscoelas-
ticity problems. The model presented is not only more rigorous physically, but also may avoid the nu-
merical oscillation caused by the occurrence of negative values in the iterative process.

By virtue of the aggregate function method, the above nonlinear programming problem with multi-
constraints is converted into an optimization with a single smooth constraint, and is solved with satis-
factory results.

Fairly good performance can be observed in the numerical tests with time independent and dependent
noise data.

Due to its smooth and differentiable properties, the aggregate function method can be expected to be
utilized to solve larger scale inverse problems with a larger number of constraints (see e.g. Li, 1991).
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