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Abstract

This paper presents a nonlinear programming model with multi-constraints of inequality to solve inverse visco-

elasticity problems. By utilizing an aggregate function approach, multi-constraints are converted into a single smooth

constraint. The optimization with a single constraint is realized by using a technique of multiplier penalty functions, and

a standard BFGS algorithm is employed in the solution process. Results with time dependent and independent noise

data are given.

� 2003 Published by Elsevier Science Ltd.
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1. Introduction

One of the important issues of inverse viscoelasticity problems is determining unknown viscoelastic

parameters via some known information of quasi-static displacements. A number of relevant literatures can
be found. Li (1992) employed an iterative method to estimate Young�s module of a concrete dam; Yang
(1996, 1998) developed an approach identifying viscoelastic parameters in homogeneous and inhomoge-

neous media. A 3-D inverse analysis for identifying viscoelastic constitutive parameters was given by Yang

(see e.g. Yang and Zhu, 1991). The application of six kinds optimization techniques solving inverse

viscoelasticity problems was discussed by Lv (1996), the merits and demerits of these techniques were

evaluated in terms of the choice of initial guess, convergence rate, convergence precision, etc.

In the past work, the determination of unknown viscoelastic parameters was usually proposed and

solved as an unconstrained optimization problem. However for the constitutive parameters to be identified,
there physically exist a constraint of lower bound greater than �0�. Without consideration of this constraint,
numerical oscillation, lower convergence rate, and even divergence may occur in the iterative process of
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unconstrained optimization, especially in the case without guarantee of the convexity for the proposed

problems.

With the above consideration, a nonlinear programming model with multi-constraints is proposed to

estimate unknown viscoelastic parameters in this paper. By exploiting a maximum entropy theory based on
aggregate function method, multi-constraints can be converted into a single differentiable constraint

without distinguishing active and inactive constraints in the iterative process. The optimization with a single

constraint is realized using a technique of multiplier penalty functions. Satisfactory results are shown in the

numerical validation, and the effects of time dependent and independent noise data on the results are given.

2. Governing equations for direct viscoelasticity problems

For direct viscoelasticity problems, the governing equations which describe equilibrium relationship,

relationship of displacement and strain, and constitutive relationship, can be given by (see e.g. Christensen,

1982)

½H1�frg þ fF g ¼ 0 ð1Þ

feg ¼ ½H2�fug ð2Þ

feg ¼ ½D�Lðfrg 	 frg0Þ ð3Þ

where feg and frg represent strain and stress vectors, fF g is a vector of body force, frg0 denotes a vector of
initial stress, ½D� is a constant matrix only related with Poisson ratio l, ½H1� ¼ ½H2�T denotes a matrix of
differential operators.

For the plane stress problem

½D� ¼
1 	l 0

	l 1 0
0 0 2ð1þ lÞ

2
4

3
5 ð4Þ

½H2� ¼

o

ox
0

0
o

oy
o

oy
o

ox

2
666664

3
777775 ð5Þ

L is an integral operator (see e.g. Christensen, 1982), and is defined by

L ¼ ð Þ
E

�
	
Z t

0

ð Þ o

os
dds

	
ð6Þ

where E is Young�s modulus, t represents time, s is an integral variable, and d denotes a kernel function.
The boundary conditions are

fug ¼ fûug x 2 Cu ð7Þ

½n�frg ¼ ff g x 2 Cr ð8Þ

where fûug is a vector of prescribed displacements, ½n� refers to a unit vector of outside normal on the
boundaries ff g is a vector of prescribed traction on the boundaries, x represents a vector of coordinates
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C ¼ Cu þ Cr denotes the whole boundary of the domain, subscripts u and r represent displacement and
stress, respectively.

Under the condition that fF g, ff g, and frg0 are time independent, and fûug ¼ 0, it has been proved that
the solution of Eqs. (1)–(3), (7) and (8) can be given by (see e.g. Yang and Li, 2000)

fug ¼ QðX ; tÞfuge ð9Þ

where fuge is the solution of an elasticity problem, and can be determined by fF g, ff g and frg0 analytically
or numerically.

QðX ; tÞ ¼ 1=E 	
Z t

0

o

os
dðt; s;X Þds ð10Þ

where X represents a vector of viscoelastic parameters, dðt; s;X Þ is a kernel function, and has different forms
for different viscoelastic models. In this paper, Burgers model is adopted (as shown in Fig. 1). In this case,

Qðx; tÞ becomes
Qðt; xÞ ¼ x1 þ t � x2 þ ð1	 expð	x4 � tÞÞ � x3 ð11Þ

where x1 ¼ 1=E1, x2 ¼ 1=g1, x3 ¼ 1=E2, x4 ¼ E2=g2.
The reduction of model (11) leads to some simpler viscoelastic models, i.e.

(a) Qðx; tÞ will tend to be a Maxwell model when E2 and g2 approach to 1,
(b) Qðx; tÞ will tend to be a Kelvin model when E1 and g1 approach to 1,
(c) Qðx; tÞ will tend to be a Linear model when g1 approaches to 1.

3. Inverse viscoelasticity problem

For the inverse problem of Eq. (9), the left hand side of Eq. (9) are all or partially known, the unknowns
to be determined are fXg ¼ fx1; x2; x3; x4g on the right hand side.

Fig. 1. A Burgers model.
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fXg can be evaluated by minimizing a function defined by

P ¼ 1
2

X
ð~uuk 	 u
kÞ

Tð~uuk 	 u
kÞ ¼
X

RTk � Rk ð12Þ

The constraints can be described by

S:T: xi > 0 ði ¼ 1; 2; . . . ;mÞ ð13Þ
where u
k denotes a vector of known quasi-static displacements which is usually obtained by measurement;
~uuk is given by Eq. (9), and subscript k represents a time series of sample points. The constraints of Eq. (13)
represent the physical requirements for the viscoelastic parameters.
The sensitivity of P with respect to fXg is given by

oP
oX

¼
X

GTk � Rk

where

Gk ¼
o~uuk
oX

¼ fueg � oQkðX ; tÞ
oX

ð14Þ

oQkðX ; tÞ
ox1

¼ 1 ð15Þ

oQkðX ; tÞ
ox2

¼ ti ð16Þ

oQkðX ; tÞ
ox3

¼ 1	 expð	x4 � tiÞ ð17Þ

oQkðX ; tÞ
ox4

¼ x3ti expð	x4 � tiÞ ð18Þ

4. Implementation of aggregate function method

Multi-constraints defined by Eq. (13) can be converted into a single differentiable constraint via a
maximum entropy theory based on aggregate function method (see e.g. Li, 1991, 1994), the trouble caused

by distinguishing active and inactive constraints in the iterative process can therefore be avoided. Fur-

thermore, some well developed algorithms, such as quasi-exact penalty function algorithm, multiplier

penalty functions algorithm etc., can be exploited (see e.g. Li, 1991, 1994).

Consider a problem defined by

ðPÞ min f ðY Þ
s:t: giðY Þ6 0; i ¼ 1; 2; . . . ;m

�
Y 2 Rn ð19Þ

where Y is a vector of variables, f ðY Þ and giðY Þ are smooth nonlinear functions of Y .
The problem ðPÞ can be converted into an equivalent problem with a single constraint

ðP1Þ min f ðY Þ
s:t: cðY Þ6 0

�
ð20Þ

where the single constraint is termed as �maximum� constraint, having the form
cðY Þ ¼ max

i
fgiðY Þg ð21Þ
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The problems of (P1) and (P) are definitely equivalent since they have the same feasible regions. Due to the

nondifferentiability of Eq. (21), gp, a �surrogate constraint� or �aggregate function�, was proposed by Li
(1991, 1994) to smooth constraint, it can be described by

gpðY Þ ¼ ð1=pÞ ln
Xm
i¼1
exp½p � giðY Þ�

( )
ð22Þ

where p is a positive parameter.
There exists an inequality relationship (see e.g. Li, 1994)

cðY Þ6 gpðY Þ6 cðY Þ þ lnðmÞ=p ð23Þ
where m is the number of constraints.
Li (1994) proved that gpðY Þ will approach cðY Þ uniformly in Rn when p tends to infinity. Thus the

problem (P1) with a nonsmooth constraint (21) can be equivalent to a problem with a single smooth

constraint, i.e.

ðP2Þ
min f ðY Þ

s:t: gpðY Þ ¼ ð1=pÞ ln
Xm
i¼1
exp½p � giðY Þ�

( )
6 0

8><
>: ð24Þ

gpðY Þ represents an integral effect of all constraints. The adoption of gpðY Þ can make computing more
efficient (see e.g. Li, 1994).

When problem (P) has at least one �active� constraint, the single inequality constraint of (P2) can be
further written as an equality constraint (see e.g. Cheng, 1984; Tang and Qin, 2000). By means of multiplier

penalty functions (see e.g. Tang and Qin, 2000), the problem (P2) can be treated as an unconstrained

optimization defined by

ðP3Þ min UpðY ; aÞ ¼ f ðY Þ þ a � gpðY Þ þ c � g2pðY Þ=2 ð25Þ

where c is a penalty factor, a is a Lagrange multiplier associated with the single constraint (22), a is equal to
the sum of all Lagrange multipliers in the problem (P) (see e.g. Li, 1994).
In the iterative process, a will be updated by

akþ1 ¼ ak þ c � gpðY kÞ ð26Þ
In order to solve Eq. (25), a standard BFGS algorithm (see e.g. Cheng, 1984; Tang and Qin, 2000) for
unconstrained optimization is employed.

The major steps of solving Eq. (25) via the BFGS algorithm include

III. Set n (the number of unknown variables), e (the convergence precision), Y 0 (the initial guess), p and c.
Set a0 ¼ 0, B0 ¼ I (unit matrix), and K ¼ 0.
Calculate F0, the gradient of the objective function (25) at the point Y 0.

III. Set SK ¼ 	B	1
K FK ,

Determine aK by minimizing f ðY k þ akSkÞ along the direction of SK ,
Set Y Kþ1 ¼ Y K þ aKSK

Calculate FKþ1
III. Check the criterion if kY kþ1 	 Y kk6 e, Then

Y 
B ¼ Y Kþ1; f 
B ¼ f ðY Kþ1Þ
stop iteration, and go to VI

Else Go to IV

IV. Calculate
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BKþ1 ¼ Bk þ 1þ cTKBKcK
cTKcK

� �
dKdTK
dTKcK

	 dKcKBK þ BKcKdTK
dTKcK

dK ¼ Y Kþ1 	 Y K ; cK ¼ F Kþ1 	 F K

IV. Update a by using Eq. (26)
Set K ¼ K þ 1
Go to II

VI. Stop

where Fi represents the gradient of the objective function (25) at the point Y i.

5. Numerical examples and remarks

By considering Eqs. (12) and (13) as Problem (P), and using the techniques proposed in the Section 4, a

number of numerical tests are carried out. The results of identification are exhibited in Table 1. Table 2

shows the effect of initial guess of iteration on the results

Two kinds of noise data are taken into account (see e.g. Wang et al., 2000), i.e.

fu
g ¼ QðX ; tÞð1þ r � nÞ � fueg ðtime independent noise dataÞ ð27Þ
and

fu
g ¼ QðX ; tÞ � ð1þ r � n � sinðtÞÞ � fueg ðtime dependent noise dataÞ ð28Þ
where fu
g represents the known information of quasi-static displacements with noise data, n is a random
variable, and follows a normal distribution with zero mean and unit standard deviation, r denotes a de-
viation.

For each fixed value of r, 50 groups of results are obtained with 50 n produced randomly.The confidence
interval is evaluated by (see e. g. Wang et al., 2000)

x� tðb=2;N	1Þ 
 Sffiffiffiffi
N

p ð29Þ

where x represents the mean of identified parameters, S is the standard deviation of identified parameters, t
denotes a t distribution with the degree of freedom (N 	 1), N is the capability of samples, and the con-
fidence level is 1	 b.
The results with a confidence interval of 95% for both time independent and dependent noise data are

given in Tables 3 and 4 where all the computing parameters are as same as those in Table 1.

In the above numerical examples,

fuegT ¼ ð1:0000; 1:0005; 1:0006Þ;
the units adopted are time: s (second), E: N/cm2, g: sN/cm2.
On the basis of the above numerical tests, some remarks can be given as follows

iii(i) The proposed approach is capable of identifying viscoelasticity constitutive parameters/models within

few steps of iteration.

ii(ii) The choice of initial guess shows slight effect on the final results, however steps of iteration will be

affected.

i(iii) The results of identification are basically not affected by choosing different number of sample points.
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Table 2

The effect of initial guess on the results

Initial guesses Final values Actual values Size of

time

interval

Number

of sample

points

Number

of

iterations
E1 g1 E2 g2 E1 g1 E2 g2 E1 g1 E2 g2

1.0E11 1.0E15 1.0E12 1.0E16 0.998E5 1.000E8 5.000E4 1.000E7 1.0E5 1.0E8 5.0E4 1.0E7 5.0 578 15

1.0E6 1.0E10 1.0E10 1.0E12 1.011E5 0.999E8 4.980E4 0.982E7 1.0E5 1.0E8 5.0E4 1.0E7 5.0 778 15

1.0E4 1.0E5 1.0E4 1.0E6 1.004E5 0.999E8 4.993E4 0.993E7 1.0E5 1.0E8 5.0E4 1.0E7 5.0 678 3

Table 1

Identification of viscoelastic parameters/models

Initial guesses Final values Actual values Size of

time

inter-

val

Number

of

sample

points

Number

of itera-

tions

Models

E1 g1 E2 g2 E1 g1 E2 g2 E1 g1 E2 g2

1.0E8 1.0E9 1.0E8 1.0E10 1.00E5 1.00E8 6.73E18 6.73E21 1.00E5 1.00E8 1 1 5. 0 878 2 Maxwel

1.0E8 1.0E9 1.0E8 1.0E10 0.24E9 0.21E13 5.00E4 1.00E7 1 1 5.00E4 1.00E7 5. 0 578 2 Kelvin

1.0E8 1.0E9 1.0E8 1.0E10 1.00E5 7.99E11 4.99E4 0.99E7 1.00E5 1 5.00E4 1.00E7 5. 0 578 3 Linear

1.0E8 1.0E9 1.0E8 1.0E10 1.00E5 0.99E8 4.99E4 0.997E7 1.00E5 1.00E8 5.00E4 1.00E7 5. 0 578 3 Burgers
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Table 3

The effect of time independent noise data on the results

Models Expected values Confidence intervals

E1 g1 E2 g2 E1 g1 E2 g2

Maxwel r ¼ 0:01 0.995301E5 0.995301E8 0.530907E19 0.530907E21 0.993359E5–

0.997243E5

0.993359E8–

0.997243E8

0.470065E19–

0.591748E19

0.470065E21–

0.591748E21

r ¼ 0:03 0.884810E5 0.986771E8 0.412023E19 0.412023E21 0.854451E5–

0.915169E5

0.981132E8–

0.992411E8

0.333391E19–

0.490655E19

0.333391E21–

0.490655E21

Linear r ¼ 0:01 0.100043E6 0.451482E12 0.496967E5 0.987215E7 0.998704E5–

0.100216E6

0.362738E12–

0.540226E12

0.495961E5–

0.497973E5

0.985218E7–

0.989213E7

r ¼ 0:03 0.996059E5 0.884086E12 0.492168E5 0.972402E7 0.992059E5–

0.100006E6

0.821734E12–

0.946438E12

0.489107E5–

0.495229E5

0.963775E7–

0.981029E7

Burgers r ¼ 0:01 0.100680E6 0.981596E8 0.500010E5 0.978376E7 0.100578E6–

0.100782E6

0.976520E8–

0.986673E8

0.499614E5–

0.500405E5

0.972530E7–

0.984222E7

r ¼ 0:03 0.100417E6 0.963926E8 0.496078E5 0.957988E7 0.100235E6–

0.100599E6

0.953527E8–

0.974325E8

0.493769E5–

0.498386E5

0.946076E7–

0.969900E7

Table 4

The effect of time dependant noise data on the results

Models Expected values Confidence intervals

E1 g1 E2 g2 E1 g1 E2 g2

Linear r ¼ 0:01 0.100748E6 0.168685E12 0.498987E5 0.988381E7 0.100641E6–

0.100855E6

0.158346E12–

0.179024E12

0.498839E5–

0.499135E5

0.986792E7–

0.989970E7

r ¼ 0:03 0.100742E6 0.155425E14 0.498970E5 0.988898E7 0.100643E6–

0.100841E6

0.116479E14–

0.194371E14

0.498857E5–

0.499084E5

0.987077E7–

0.990719E7

Burgers r ¼ 0:01 0.100951E6 0.986326E8 0.501735E5 0.983836E7 0.100855E6–

0.101047E6

0.984981E8–

0.987670E8

0.501565E5–

0.501906E5

0.982185E7–

0.985487E7

r ¼ 0:03 0.101409E6 0.979825E8 0.502520E5 0.976649E7 0.101073E6–

0.101745E6

0.975524E8–

0.984126E8

0.501963E5–

0.503077E5

0.970790E7–

0.982509E7

3
7
1
4
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i(iv) The results of identification are affected by the noise data, and seem more sensitive to time dependant

noise data.

ii(v) The choice of p is a key factor affecting computing efficiency and final results. A larger p may lead to a
smaller convergence domain. A proper way is to modify p in the iteration process.

i(vi) The choice of c seems no effect on the convergence, and may affect the convergence rate slightly.
(vii) The initial choice of a has great effect on the computing efficiency, by initializing a ¼ 0 satisfactory

results have been obtained for the most numerical tests.

6. Conclusion

With the consideration of the constraints of lower bound for viscoelastic constitutive parameters, a

nonlinear programming model with multi-constraints is proposed in this paper to solve inverse viscoelas-

ticity problems. The model presented is not only more rigorous physically, but also may avoid the nu-

merical oscillation caused by the occurrence of negative values in the iterative process.
By virtue of the aggregate function method, the above nonlinear programming problem with multi-

constraints is converted into an optimization with a single smooth constraint, and is solved with satis-

factory results.

Fairly good performance can be observed in the numerical tests with time independent and dependent

noise data.

Due to its smooth and differentiable properties, the aggregate function method can be expected to be

utilized to solve larger scale inverse problems with a larger number of constraints (see e.g. Li, 1991).
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